Биоинформатика, машинное обучение, технологии программирования, теория кодирования, проактивные системы

  • Руководитель: Парфенов Владимир Глебович

Публикации

  1. 90. Chivilikhin D., Ulyantsev V. Inferring Automata-Based Programs from Specification With Mutation-Based Ant Colony Optimization // GECCO 2014 - Companion Publication of the 2014 Genetic and Evolutionary Computation Conference - 2014, pp. 67-68 [SJR: 0.172]
    подробнее >>
  2. 89. Buzdalov M.V., Kever M.E., Doerr B. Upper and Lower Bounds on Unrestricted Black-Box Complexity of Jump(n,l) // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) - 2015, Vol. 9026, pp. 209-221 [SJR: 0.315]
    подробнее >>
  3. 88. Buzdalova A.S., Buzdalov M.V., Parfenov V.G. Generation of tests for programming challenge tasks using helper-objectives // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) - 2013, Vol. 8084, No. LNCS, pp. 300-305 [SJR: 0.315]
    подробнее >>
  4. 87. Antipov D.S., Buzdalov M.V., Doerr B. Runtime Analysis of (1+1) Evolutionary Algorithm Controlled with Q-learning using Greedy Exploration Strategy on OneMax+ZeroMax Problem // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) - 2015, Vol. 9026, pp. 160-172 [SJR: 0.315]
    подробнее >>
  5. 86. Buzdalov M., Buzdalova A. OneMax helps optimizing XdivK: Theoretical runtime analysis for RLS and EA+RL // GECCO 2014 - Companion Publication of the 2014 Genetic and Evolutionary Computation Conference - 2014, pp. 201-202 [SJR: 0.172]
    подробнее >>
  6. 85. Aksenov V., Kokhas K. Domino Tilings and Determinants // Journal of Mathematical Sciences - 2014, Vol. 200, No. 6, pp. 647-653 [SJR: 0.214]
    подробнее >>
  7. 84. Arkhipov V., Buzdalov M., Shalyto A. Worst-Case Execution Time Test Generation for Augmenting Path Maximum Flow Algorithms using Genetic Algorithms // Proceedings - 2013 12th International Conference on Machine Learning and Applications, ICMLA 2013 - 2013, Vol. 2, pp. 108-111
    подробнее >>
  8. 83. Lukin M., Buzdalov M., Shalyto A. Formal Verification of 800 Genetically Constructed Automata Programs: A Case Study // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) - 2014, Vol. 8855, pp. 165-170 [SJR: 0.315]
    подробнее >>
  9. 82. Buzdalov M., Buzdalova A. Analysis of Q-Learning with Random Exploration for Selection of Auxiliary Objectives in Random Local Search // IEEE Congress on Evolutionary Computation, CEC 2015 - Proceedings - 2015, pp. 1776-1783
    подробнее >>
  10. 81. Jha A.K., Huang S.C., Sergushichev A.A., Lampropoulou V., Ivanova Y., Loginicheva E., Chmielewski K., Stewart K.M., Ashall J., Everts B., Pearce E.J., Driggers E.M., Artyomov M.N. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization // Immunity - 2015, Vol. 42, No. 3, pp. 419-430 [SJR: 16.467]
    подробнее >>
  11. 80. [SJR: 0.352]
    подробнее >>
  12. 79. Vincent E.E., Sergushichev A.A., Griss T., Gingras M., Samborska B., Ntimbane T., Coelho P.P., Blagih J., Raissi T.C., Choiniere L., Bridon G., Loginicheva E., Flynn B.R., Thomas E.C., Tavare J.M., Avizonis D.Z., Pause A.P., Elder D.J., Artyomov M.N., Jones R.G. Mitochondrial Phosphoenolpyruvate Carboxykinase Regulates Metabolic Adaptation and Enables Glucose-Independent Tumor Growth // Molecular Cell - 2015, Vol. 60, No. 2, pp. 195-207 [IF: 14.018, SJR: 13.295]
    подробнее >>
  13. 78. Buzhinsky I., Vyatkin V. Plant Model Inference for Closed-Loop Verification of Control Systems: Initial Explorations // Proceedings of IEEE International Conference on Industrial Informatics (INDIN 2016) - 2016, pp. 736-739 [SJR: 0.167]
    подробнее >>
  14. 77. Chivilikhin D. Experimental Study of Automated Parameter Tuning on the Example of irace and the Traveling Salesman Problem // GECCO 2016 - Proceedings of the 2016 Genetic and Evolutionary Computation Conference - 2016, pp. 45-46
    подробнее >>
  15. 76. Eremeev A., Korneev G., Semenov A., Veijalainen J. The spanning tree based approach for solving the shortest path problem in social graphs // WEBIST 2016 - Proceedings of the 12th International Conference on Web Information Systems and Technologies - 2016, Vol. 1, pp. 42-53
    подробнее >>
  16. 75. Shalamov V., Filchenkov A., Shalyto A. Genetic Search of Pickup and Delivery Problem Solutions for Self-Driving Taxi Routing // IFIP International Conference on Artificial Intelligence Applications and Innovations - 2016, Vol. 475, pp. 348-355 [SJR: 0.183]
    подробнее >>
  17. 74. Mironovich V., Buzdalov M., Vyatkin V. Automatic Generation of Function Block Applications Using Evolutionary Algorithms: Initial Explorations // Proceedings of 2017 15th IEEE International Conference on Industrial Informatics (INDIN) - 2017, pp. 700-705
    подробнее >>
  18. 73. Kazakov S., Shalyto A. Overlap graph simplification using edge reliability calculation // Proceedings of the European Conference on Data Mining 2014 and International Conferences on Intelligent Systems and Agents 2014 and Theory and Practice in Modern Computing 2014 - Part of the Multi Conference on Computer Science and Information Systems, MCCSIS 2014 - 2014, pp. 222-226 [SJR: 0.101]
    подробнее >>
  19. 72. Buzhinsky I., Chivilikhin D., Ulyantsev V., Tsarev F. Improving the Quality of Supervised Finite-State Machine Construction Using Real-Valued Variables // GECCO 2014 - Companion Publication of the 2014 Genetic and Evolutionary Computation Conference - 2014, pp. 1037-1040 [SJR: 0.172]
    подробнее >>
  20. 71. Chivilikhin D.S., Ulyantsev V.I. Learning Finite-State Machines: Conserving Fitness Function Evaluations by Marking Used Transitions // Proceedings - 2013 12th International Conference on Machine Learning and Applications, ICMLA 2013 - 2013, Vol. 2, pp. 90-95
    подробнее >>
  21. 70. Buzdalov M., Buzdalova A., Shalyto A. A First Step towards the Runtime Analysis of Evolutionary Algorithm Adjusted with Reinforcement Learning // Proceedings - 2013 12th International Conference on Machine Learning and Applications, ICMLA 2013 - 2013, Vol. 1, pp. 203-208
    подробнее >>
  22. 69. Petrova I., Buzdalova A., Buzdalov M. Selection of Extra Objectives using Reinforcement Learning in Non-Stationary Environment: Initial Explorations // Mendel - 2014, pp. 105-110 [SJR: 0.195]
  23. 68. Buzdalova A., Kononov V., Buzdalov M. Selecting Evolutionary Operators using Reinforcement Learning: Initial Explorations // GECCO 2014 - Companion Publication of the 2014 Genetic and Evolutionary Computation Conference - 2014, pp. 1033-1036 [SJR: 0.172]
    подробнее >>
  24. 67. Buzdalov M., Petrova I., Buzdalova A. NSGA-II Implementation Details May Influence Quality of Solutions for the Job-Shop Scheduling Problem // GECCO 2014 - Companion Publication of the 2014 Genetic and Evolutionary Computation Conference - 2014, pp. 1445-1446 [SJR: 0.172]
    подробнее >>
  25. 66. Buzdalov M., Shalyto A. A Provably Asymptotically Fast Version of the Generalized Jensen Algorithm for Non-Dominated Sorting // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) - 2014, Vol. 8672, pp. 528-537 [SJR: 0.315]
    подробнее >>
  26. 65. Buzdalov M., Shalyto A. Worst-Case Execution Time Test Generation for Solutions of the Knapsack Problem Using a Genetic Algorithm // Communications in Computer and Information Science - 2014, Vol. 472, pp. 1-10 [SJR: 0.162]
    подробнее >>
  27. 64. Pang C., Patil S., Yang C., Vyatkin V., Shalyto A. A Portability Study of IEC 61499: Semantics and Tools // Proceedings of 2014 12th IEEE International Conference on Industrial Informatics (INDIN) - 2014, pp. 440-445
    подробнее >>
  28. 63. Buzdalova A., Bulanova N. Selection of Auxiliary Objectives in Artificial Immune Systems: Initial Explorations // Mendel - 2015, pp. 47-52 [SJR: 0.195]
  29. 62. Buzdalov M., Buzdalova A. Can OneMax Help Optimizing LeadingOnes using the EA+RL Method? // IEEE Congress on Evolutionary Computation, CEC 2015 - Proceedings - 2015, pp. 1762-1768
    подробнее >>
  30. 61. Aksenov V.E., Kokhas K.P. Chip Removal. Urban Renewal Revisited // Journal of Mathematical Sciences - 2015, Vol. 209, No. 6, pp. 809-825 [SJR: 0.214]
    подробнее >>
  31. 60. Petrova I., Buzdalova A. Selection of Auxiliary Objectives in the Travelling Salesman Problem using Reinforcement Learning // GECCO'15: Proceedings of the 2015 Genetic and Evolutionary Computation Conference - 2015, pp. 1455-1456
    подробнее >>
  32. 59. Campbell J., Alexandrov A., Kim J., Wala J., Berger A.H., Pedamallu C.S., Shukla S.A., Guo G., Brooks A.N., Murray B.A., Imielinski M., Hu X., Ling S., Akbani R., Rosenberg M., Cibulskis C., Ramachandran A., Collisson E.A., Kwiatkowski D.J., Lawrence M.S., Weinstein J.N., Verhaak R.G., Wu C.J., Hammerman P.S., Cherniack A.D., Getz G., Artyomov M.N., Schreiber R., Govindan R., Meyerson M. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas // Nature Genetics - 2016, Vol. 48, No. 6, pp. 607–616 [IF: 31.616, SJR: 20.899]
    подробнее >>
  33. 58. Sergushichev A.A., Loboda A.A., Jha A.K., Vincent E.E., Driggers E.M., Jones R.G., Pearce E.J., Artyomov M.N. GAM: a web-service for integrated transcriptional and metabolic network analysis // Nucleic Acids Research - 2016, Vol. 44, No. 1, pp. W194-W200 [IF: 9.202, SJR: 7.397]
    подробнее >>
  34. 57. Chivilikhin D.S., Ulyantsev V.I., Shalyto A.A. Modified ant colony algorithm for constructing finite state machines from execution scenarios and temporal formulas // Automation and Remote Control - 2016, Vol. 77, No. 3, pp. 473-484 [IF: 0.265, SJR: 0.34]
    подробнее >>
  35. 56. Zadorozhnaya O., Kirsanov D., Buzhinsky I., Tsarev F., Abramova N., Bratov A., Munoz F.J., Ribo J., Bori J., Riva M.C., Legin A. Water pollution monitoring by an artificial sensory system performing in terms of Vibrio fischeri bacteria // Sensors and Actuators, B: Chemical - 2015, Vol. 207, No. Part B, pp. 1069-1075 [IF: 4.758, SJR: 1.333]
    подробнее >>
  36. 55. Saenko I., Kotenko I. A Genetic Approach for Virtual Computer Network Design // Studies in Computational Intelligence - 2015, Vol. 570, pp. 95-105 [SJR: 0.246]
    подробнее >>
  37. 54. Yakupov I., Buzdalov M. Incremental Non-Dominated Sorting with O(N) Insertion for the Two-Dimensional Case // IEEE Congress on Evolutionary Computation, CEC 2015 - Proceedings - 2015, pp. 1853-1860
    подробнее >>
  38. 53. Buzhinsky I.P., Ulyantsev V.I., Veijalainen J., Viatkin V.V. Evolutionary Approach to Coverage Testing of IEC 61499 Function Block Applications // Proceeding - 2015 IEEE International Conference on Industrial Informatics, INDIN 2015 - 2015, pp. 1213-1218
    подробнее >>
  39. 52. Chivilikhin D., Ivanov I., Shalyto A. Inferring Temporal Properties of Finite-State Machine Models with Genetic Programming // GECCO'15: Proceedings of the 2015 Genetic and Evolutionary Computation Conference - 2015, pp. 1185-1188
    подробнее >>
  40. 51. Shalamov V., Filchenkov A., Chivilikhin D. Small-Moves Based Mutation For Pick-Up And Delivery Problem // GECCO 2016 - Proceedings of the 2016 Genetic and Evolutionary Computation Conference - 2016, pp. 1027-1030
    подробнее >>
  41. 50. Bulanova N., Buzdalova A., Buzdalov M. Fitness-Dependent Hybridization of Clonal Selection Algorithm and Random Local Search // GECCO 2016 - Proceedings of the 2016 Genetic and Evolutionary Computation Conference - 2016, pp. 5-6
    подробнее >>
  42. 49. Vasin A., Buzdalov M. A Faster Algorithm for the Binary Epsilon Indicator Based on Orthant Minimum Search // GECCO 2016 - Proceedings of the 2016 Genetic and Evolutionary Computation Conference - 2016, pp. 613-620
    подробнее >>
  43. 48. Olekhnovich E.I., Vasilyev A.T., Ulyantsev V.I., Kostryukova E.S., Tyakht A.V. MetaCherchant: analyzing genomic context of antibiotic resistance genes in gut microbiota // Bioinformatics - 2017, pp. btx681 [IF: 5.766, SJR: 4.92]
    подробнее >>
  44. 47. Ulyantsev V., Melnik M. Constructing Parsimonious Hybridization Networks from Multiple Phylogenetic Trees Using a SAT-Solver // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) - 2015, Vol. 9199, pp. 141-153 [SJR: 0.315]
    подробнее >>
  45. 46. Buzhinsky I.P., Ulyantsev V.I., Tsarev F.N., Shalyto A.A. Search-based construction of finite-state machines with real-valued actions: New representation model // GECCO 2013 - Proceedings of the 2013 Genetic and Evolutionary Computation Conference - 2013, pp. 199-200 [SJR: 0.435]
    подробнее >>
  46. 45. Buzhinsky I.P., Ulyantsev V.I., Chivilikhin D.S., Shalyto A.A. Inducing finite state machines from training samples using ant colony optimization // Journal of Computer and Systems Sciences International - 2014, Vol. 53, No. 2, pp. 256-266 [IF: 0.503, SJR: 0.268]
    подробнее >>
  47. 44. Chivilikhin D., Ulyantsev V. Learning finite-state machines with classical and mutation-based ant colony optimization: Experimental evaluation // Proceedings of the 1st BRICS Countries Congress on Computational Intelligence, BRICS-CCI 2013 - 2013, pp. 528-533
    подробнее >>
  48. 43. Zabashta A., Smetannikov I., Filchenkov A. Study on meta-learning approach application in rank aggregation algorithm selection // CEUR Workshop Proceedings - 2015, Vol. 1455, pp. 115-117
  49. 42. Buzdalov M., Buzdalova A. Adaptive selection of helper-objectives for test case generation // 2013 IEEE Congress on Evolutionary Computation, CEC 2013 - 2013, pp. 2245-2250 [SJR: 0.367]
    подробнее >>
  50. 41. Baranov S.N., Nikiforov V. Density of multi-task real-time applications // Proceedings of the 17th Conference of Open Innovations Association FRUCT - 2015, pp. 9-15 [SJR: 0.19]
    подробнее >>
  51. 40. Buzdalov M., Shalyto A. Hard Test Generation for Augmenting Path Maximum Flow Algorithms using Genetic Algorithms: Revisited // IEEE Congress on Evolutionary Computation, CEC 2015 - Proceedings - 2015, pp. 2121-2128
    подробнее >>
  52. 39. Smetannikov I., Varlamov E., Filchenkov A. Swarm MeLiF: Feature selection with filter combination found via swarm intelligence // Advances in Intelligent Systems and Computing - 2016, Vol. 449, pp. 227-234
    подробнее >>
  53. 38. [SJR: 0.315]
    подробнее >>
  54. 37. Stoyanov D.Y., Filchenkov A.A., Gedertsev A.S. A method of measuring quality of algorithm in stream structure from Motion applied to aerial photography // Proceedings of the 19th International Conference on Soft Computing and Measurements, SCM 2016 - 2016, pp. 35-38
    подробнее >>
  55. 36. Buzdalov M., Parfenov V. Various Degrees of Steadiness in NSGA-II and Their Influence on the Quality of Results // GECCO'15: Proceedings of the 2015 Genetic and Evolutionary Computation Conference - 2015, pp. 749-750
    подробнее >>
  56. 35. Chivilikhin D.S., Ulyantsev V.I., Shalyto A.A. Solving five instances of the artificial ant problem with ant colony optimization // IFAC Proceedings Volumes (IFAC-PapersOnline) - 2013, Vol. 9, No. 1, pp. 1043-1048
    подробнее >>
  57. 34. Kravtsov N., Buzdalov M., Buzdalova A., Shalyto A. Worst-Case Execution Time Test Generation using Genetic Algorithms with Automated Construction and Online Selection of Objectives // Mendel - 2014, pp. 111-116 [SJR: 0.195]
  58. 33. Aleksandrov A.V., Tsarev F.N., Kazakov S.V., Sergushichev A.A., Shalyto A.A. The use of evolutionary programming based on training examples for the generation of finite state machines for controlling objects with complex behavior // Journal of Computer and Systems Sciences International - 2013, Vol. 52, No. 3, pp. 410-425 The use of evolutionary programming based on training examples for the generation of finite state machines for controlling objects with complex behavior [IF: 0.503, SJR: 0.268]
    подробнее >>
  59. 32. Buzdalova A., Matveeva A., Korneev G. Selection of Auxiliary Objectives with Multi-Objective Reinforcement Learning // GECCO'15: Proceedings of the 2015 Genetic and Evolutionary Computation Conference - 2015, pp. 1177-1180
    подробнее >>
  60. 31. Petrova I., Buzdalova A., Buzdalov M. Improved Helper-Objective Optimization Strategy for Job-Shop Scheduling Problem // Proceedings - 2013 12th International Conference on Machine Learning and Applications, ICMLA 2013 - 2013, Vol. 2, pp. 374-377
    подробнее >>
  61. 30. Glotov A.S., Kazakov S., Zhukova E.A., Alexandrov A., Glotov O.S., Pakin V.S., Danilova M.M., Poliakova I.V., Niyazova S.S., Chakova N.N., Komissarova S.M., Kurnikova E.A., Sarana A.M., Sherbak S.G., Sergushichev A., Shalyto A., Baranov V.S. Targeted next-generation sequencing (NGS) of nine candidate genes with custom AmpliSeq in patients and a cardiomyopathy risk group // Clinica Chimica Acta - 2015, Vol. 446, pp. 132-140 [IF: 2.799, SJR: 1.026]
    подробнее >>
  62. 29. Dubinkina V.B., Ischenko D.S., Ulyantsev V.I., Tyakht A.V., Alexeev D.G. Assessment of k-mer spectrum applicability for metagenomic dissimilarity analysis // BMC bioinformatics - 2016, Vol. 17, No. 1, pp. 38 [IF: 2.435, SJR: 1.467]
    подробнее >>
  63. 28. Rost A., Petrova I., Buzdalova A. Adaptive Parameter Selection in Evolutionary Algorithms by Reinforcement Learning with Dynamic Discretization of Parameter Range // GECCO 2016 - Proceedings of the 2016 Genetic and Evolutionary Computation Conference - 2016, pp. 141-142
    подробнее >>
  64. 27. Kapun E., Tsarev F.N. On NP-hardness of the paired de Bruijn sound cycle problem // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) - 2013, Vol. 8126, No. LNBI, pp. 59-69 [SJR: 0.315]
    подробнее >>
  65. 26. Buzdalov M., Yakupov I., Stankevich A. Fast Implementation of the Steady-State NSGA-II Algorithm for Two Dimensions Based on Incremental Non-Dominated Sorting // GECCO'15: Proceedings of the 2015 Genetic and Evolutionary Computation Conference - 2015, pp. 647-654
    подробнее >>
  66. 25. Zadorozhnaya O., Kirsanov D., Buzhinsky I., Tsarev F., Abramova N., Bratov A., Munoz F.J., Ribo J., Bori J., Riva M.C., Legin A. Water pollution monitoring by an artificial sensory system performing in terms of Vibrio fischeri bacteria // Sensors and Actuators, B: Chemical - 2015, Vol. 207, No. Part B, pp. 1069-1075 [IF: 4.758, SJR: 1.333]
    подробнее >>
  67. 24. Chivilikhin D.S., Ulyantsev V.I. MuACOsm - A New Mutation-Based Ant Colony Optimization Algorithm for Learning Finite-State Machines // GECCO 2013 - Proceedings of the 2013 Genetic and Evolutionary Computation Conference - 2013, pp. 511-518 MuACOsm - A New Mutation-Based Ant Colony Optimization Algorithm for Learning Finite-State Machines [SJR: 0.435]
    подробнее >>
  68. 23. Arkhipov V., Buzdalov M. An asynchronous implementation of the limited memory CMA-ES: First results // Mendel - 2015, pp. 43-46 [SJR: 0.195]
  69. 22. Golubtsov N., Galper D., Filchenkov A. Active adaptation of expert-based suggestions in ladieswear recommender system LookBooksClub via reinforcement learning // Advances in Intelligent Systems and Computing - 2016, Vol. 449, pp. 61-69
    подробнее >>
  70. 21. Zabashta A., Smetannikov I., Filchenkov A. Rank aggregation algorithm selection meets feature selection // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) - 2016, Vol. 9729, pp. 740-755 [SJR: 0.315]
    подробнее >>
  71. 20. Konoplich G.V., Putin E.O., Filchenkov A.A. Application of deep learning to the problem of vehicle detection in UAV images // Proceedings of the 19th International Conference on Soft Computing and Measurements, SCM 2016 - 2016, pp. 4-6
    подробнее >>
  72. 19. Buzdalov M., Doerr B. Runtime Analysis of the (1 + (lambda, lambda)) Genetic Algorithm on Random Satisfiable 3-CNF Formulas // GECCO 2017 - Proceedings of the Genetic and Evolutionary Computation Conference - 2017, pp. 1343-1350
    подробнее >>
  73. 18. Yakupov I., Buzdalov M. Improved Incremental Non-dominated Sorting for Steady-State Evolutionary Multiobjective Optimization // GECCO 2017 - Proceedings of the Genetic and Evolutionary Computation Conference - 2017, pp. 649-656
    подробнее >>
  74. 17. Isaev I., Smetannikov I. MeLiF+: Optimization of filter ensemble algorithm with parallel computing // IFIP Advances in Information and Communication Technology - 2016, Vol. 475, pp. 341-347 [SJR: 0.183]
    подробнее >>
  75. 16. Buzhinsky I.P., Ulyantsev V.I., Shalyto A.A. Test-based induction of finite-state machines with continuous output actions // IFAC Proceedings Volumes (IFAC-PapersOnline) - 2013, Vol. 9, No. 1, pp. 1049-1054
    подробнее >>
  76. 15. Furia C.A., Meyer B.E., Oriol M., Tikhomirov A.V., Yi W. The search for the laws of automatic random testing // Proceedings of the ACM Symposium on Applied Computing - 2013, pp. 1211-1216
    подробнее >>
  77. 14. Kotenko I.V., Saenko I.B. Improved genetic algorithms for solving the optimisation tasks for design of access control schemes in computer networks // International Journal of Bio-Inspired Computation - 2015, Vol. 7, No. 2, pp. 98-110 [IF: 1.681, SJR: 0.622]
    подробнее >>
  78. 13. Buzdalov M. An Algorithm for Computing Lower Bounds for Unrestricted Black-Box Complexities // GECCO 2016 - Proceedings of the 2016 Genetic and Evolutionary Computation Conference - 2016, pp. 147-148
    подробнее >>
  79. 12. Levenets D.G., Zotov M.A., Romanov A.V., Tulupyev A.L., Zolotin A.A., Filchenkov A. Decremental and incremental reshaping of algebraic Bayesian networks global structures // Advances in Intelligent Systems and Computing - 2016, Vol. 451, pp. 57-67
    подробнее >>
  80. 11. Loboda A.A., Artyomov M.N., Sergushichev A.A. Solving generalized maximum-weight connected subgraph problem for network enrichment analysis // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) - 2016, Vol. 9838, pp. 210-221 [SJR: 0.315]
    подробнее >>
  81. 10. Nigmatullin N., Buzdalov M., Stankevich A. Efficient removal of points with smallest crowding distance in two-dimensional incremental non-dominated sorting // GECCO 2016 - Proceedings of the 2016 Genetic and Evolutionary Computation Conference - 2016, pp. 1121-1128
    подробнее >>
  82. 9. Zadorozhnaya O., Kirsanov D., Buzhinsky I., Tsarev F., Abramova N., Bratov A., Munoz F.J., Ribo J., Bori J., Riva M.C., Legin A. Water pollution monitoring by an artificial sensory system performing in terms of Vibrio fischeri bacteria // Sensors and Actuators, B: Chemical - 2015, Vol. 207, No. Part B, pp. 1069-1075 [IF: 4.758, SJR: 1.333]
    подробнее >>
  83. 8. Buzhinsky I., Pang C., Vyatkin V. Formal Modeling of Testing Software for Cyber-Physical Automation Systems // 14th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, TrustCom 2015, Proceedings - 2015, Vol. 3, pp. 301-306
    подробнее >>
  84. 7. Buzdalov M.V., Buzdalova A.S., Petrova I.A. Generation of tests for programming challenge tasks using multi-objective optimization // GECCO 2013 - Proceedings of the 2013 Genetic and Evolutionary Computation Conference - 2013, pp. 1655-1658 [SJR: 0.435]
    подробнее >>
  85. 6. Ulyantsev V., Zakirzyanov I., Shalyto A. BFS-Based Symmetry Breaking Predicates for DFA Identification // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) - 2015, Vol. 8977, pp. 611-622 [SJR: 0.315]
    подробнее >>
  86. 5. Kapun E., Tsarev F.N. De Bruijn Superwalk with Multiplicities Problem is NP-hard // BMC bioinformatics - 2013, Vol. 14, No. 5, pp. S7 [IF: 2.435, SJR: 1.467]
    подробнее >>
  87. 4. Mironovich V., Buzdalov M. Generation of tests against a greedy algorithm for the knapsack problem using an evolutionary algorithm // Mendel - 2014, pp. 77-82 [SJR: 0.195]
  88. 3. Zhabelova G., Yang C., Patil S., Pang C., Yan J., Shalyto A., Vyatkin V. Cyber-physical components for heterogeneous modelling, validation and implementation of smart grid intelligence // Proceedings of 2014 12th IEEE International Conference on Industrial Informatics (INDIN) - 2014, pp. 411-417
    подробнее >>
  89. 2. Kotenko I., Шоров А. Simulation of bio-inspired security mechanisms against network infrastructure attacks // Studies in Computational Intelligence - 2015, Vol. 570, pp. 127-133 [SJR: 0.246]
    подробнее >>
  90. 1. Mironovich V., Buzdalov M. Hard Test Generation for Maximum Flow Algorithms with the Fast Crossover-Based Evolutionary Algorithm // GECCO'15: Proceedings of the 2015 Genetic and Evolutionary Computation Conference - 2015, pp. 1229-1232
    подробнее >>